Tangle diagrams

Let *T* be a tangle diagrams

- P_T := vector space generated by endpoints of T
- V_T := vector space generated by exterior faces of T
- $U_T :=$ vector space generated by interior faces of T
- $M_T :=$ quadratic form on $U_T \oplus V_T$ by [doing a thing at each crossing]

Let $\delta: V_T \hookrightarrow P_T$ be the map that embeds V_T into P_T by sending each face to its first endpoint (going counterclockwise). Operations on tangles:

- **Disjoint union**: $T_1, T_2 \mapsto T_1 \sqcup T_2 = T_1 \sqcup_{p_1, p_2} T_2$
- Capping: $T \mapsto \widetilde{T} = \widetilde{T}_p$

3-tuples

Let *P* be a vector space. Let $\mathcal{T}(P)$ be 3-tuples $\{(n, W, B)\}\$ where:

- \bullet $n \in \mathbb{Z}$
- $\bullet \ \ W \subseteq P$ a subspace
- $B: W \to W^*$ a quadratic form

Operations on 3-tuples:

- Adding: $(n_1, W_1, B_1) + (n_2, W_2, B_2) := (n_1 + n_2, W_1 \oplus W_2, B_1 \oplus B_2) \in \mathcal{T}(P_1 \oplus P_2).$
- Pullback by $\phi: P_1 \to P_2$: $\phi^*(n_2, W_2, B_2) = (n_2, \phi^{-1}(W_2), \phi^*B_2\phi)$

A map s from tangle diagrams to 3-tuples

Let *s* be a map that sends *T* to $s(T) = (n_T, W_T, B_T) \in \mathcal{T}(P_T)$ where:

- $n_T = \sigma(M|_{U_T})$
- $W_T = \{ v \in V_T : M(v)|_{U_T} \in \text{im}(M|_{U_T}) \}$
- $B_T: W_T \to W_T^*$ is given by $B_T(v_1)(v_2) := M(v_1 u_1)(v_2 u_2)$ where $u_1, u_2 \in U_T$ are such that $M(u_1)|_{U_T} = M(v_1)|_{U_T}$ and $M(u_2)|_{U_T} = M(v_2)|_{U_T}$

Note that:

- B_T does not depend on the choices of u_1, u_2 .
- Can decompose $U^* \cong \text{im}(M|_U) \oplus \text{ker}(M|_U)^*$ so can also describe W_T as:
	- $\cdot \{v \in V_T : M(v)|_{\ker(M|_U)} = 0\}$ or
	- the image of the projection of $\{w \in U_T \oplus V_T : M(w)|_U = 0\}$ to V_T .

How operations on tangles change *s*:

- For disjoint union: $s(T_1 \sqcup T_2) = s(T_1) \oplus s(T_2)$
- For capping:

If there is $v \in W_T$ that becomes an interior face in \widetilde{T} , then $s(\widetilde{T}) = i^*(n_T + B_T(v)(v), \text{Ann}_{B_T}(v), B_T|_{\text{Ann}_{B_T}(v)})$

• If there is no such *v*, then $s(\tilde{T}_p) = i^*(s(T))$

where $i: P_{\widetilde{T}} \to P_T$ is the identity everywhere except $p_a \to p_a + p_b$ where p_a, p_b are the endpoints before and after p.

Theorem 0.1. *If* $s(T_1) = s(T_2)$ *, then:*

- $s(T_1 \sqcup T) = s(T_2 \sqcup T)$ *for any T*
- $s(\widetilde{T_1}) = s(\widetilde{T_2})$

A tangle invariant

Theorem 0.2. *s is a tangle invariant.*

Proof. By the previous theorem, just need to show that applying *s* to the two sides of each Reidemeister move gives the same thing. \Box

OCM $\frac{1}{2}\chi^{7}A\chi + \chi^{7}B\chi = \frac{1}{2}(x+4)/2(x+A^{-1}By) - \frac{1}{2}/87/8$

 $\chi^T \beta$ y $xy = \frac{(x+y)^2}{2} - \frac{(x-y)^2}{2}$ $4787x$

 $(x + Py)^\top By = x^\top By + y^\top p^\top By$

What best can be made of the inverse of a quadratic form, if it is degenerate?

 $(pTg) = B^Tf$ $sign\left(\begin{array}{cc} 0 & B \\ B^T & 0 \end{array}\right) = \frac{2}{\sigma}$ \mathcal{B} C $C=CT$ 1. row ked reduce
 $C=CT$ 3 to $\begin{pmatrix} 1,3 \\ 6,3 \end{pmatrix}$
2. compute $\begin{pmatrix} 2,4,3 \\ 5,7,7 \end{pmatrix}$ \mathcal{B}^{T}

 $\overline{1}$

 $Sipn two: A227. Vc
inv. unic-bigndv
pullbicks.

$$
Sym(0,0) = 0
$$$

 \circ | -1 \bullet $-16 - 5$